
 1

Update-aware Controlled Prefix Expansion for
Fast IP Lookups

Yeim-Kuan Chang, Yung-Chieh Lin, and Kuan-Ying Ho
National Cheng Kung University, Tainan, Taiwan

{ykchang, p7894110, p7695139}@mail.ncku.edu.tw

Abtract-In high performance routers design, fast IP
address lookup is always a challenge. In order to obtain fast
lookup speed, multi-bit tries are often used to represent the
routing tables [1,2,3,6]. The drawbacks of multi-bit tries are the
large memory usage and extensive update cost. To reduce the
memory usage of multi-bit tries, Srinivasan and Varghese
proposed a scheme called Controlled Prefix Expansion (CPE) [2]
that uses the dynamic programming technique to obtain the
optimal multi-bit tries in terms of memory usage. Furthermore,
current backbone routers usually run the Border Gateway
Protocol (BGP). BGP may cause a few hundred of updates per
second. To make multi-bit tries adequate to these updates, a
series of multi-bit tries nodes need to be modified. Since these
updates can seriously affect the lookup speed, we need to
minimize these update cost. However, CPE does not concern
this issue. In this paper, we explore the optimization issue in
terms of the update cost. We want to find an update-optimal
multi-bit tries that still have the efficiency of lookup speed and
memory usage. Contrast to CPE, our solutions achieve a 30%
reduction of the update overhead and improve 37% of the
search speed. Besides, we also examine our schemes in IPv6
routing tables. The experimental results show that our scheme
can also scale well in IPv6.

Keywords: IP address lookup, multi-bit tries, route
update, controlled prefix expansion

1. Introduction
The advent of the World Wide Web (WWW) has

doubled the network traffic on the Internet every few
months. Besides, many emerging networking applications,
such as video conferencing, remote distance learning, and
digital libraries, are expected to create more and more
traffic. If the Internet wants to continue to furnish good
quality-of-service (QoS), four key issues must be
addressed in the designing of the next generation IP
routers: 1) higher link speeds; 2) better data throughput; 3)
faster packet forwarding rate; and 4) quick adaptation to
the routing changes. The solutions to the first two issues
are now readily available. For example, fiber-optic cables
can provide faster link speeds, and new IP-switching
technology (layer-3 switching or multi-layer switching)
can be used to transmit packet from the input interface of
a router to the corresponding output interface at multi-
gigabit speeds [6]. This paper deals with the other two
issues: forwarding packets at high speeds while still
allowing for frequent updates of the routing tables.

In order to achieve high packet forwarding rate,
multi-bit tries are the well-know data structures that are

often used to represent the routing tables [1,2,3,6]. Multi-
bit tries can finish one lookup operation in a bounded
number of memory references. However, the drawbacks
of multi-bit tries are the large memory consumption and
the poor update performance due to the routes changes.
To reduce the memory consumption of multi-bit tries,
many researchers have focused on the optimization issues
of multi-bit tries in terms of the memory consumption
[2,3]. In contrast, papers deal with the update-optimal
multi-bit tries are rare. This paper focuses on finding the
optimal multi-bit tries in terms of update costs for the
fixed-stride multi-bit tries (FST) and the variable-stride
multi-bit tries (VST), respectively. The rest of the paper
is organized as follows. In section 2, we present an
overview of previous works on IP address lookup. In
section 3, we illustrate the concepts and properties of the
proposed optimization techniques of multi-bit tries. The
extensive experimental results are shown in section 4.
Finally, a brief conclusion is remarked in section 5.

2. Related works
In backbone routers, IP address lookup is the most

critical function in the packet forwarding process. Binary
trie (i.e., 1-bit trie) [1,6] is the basic data structure that is
used in the IP address lookup problem. Binary trie is
efficient in the updates of routing routes. However, it has
the worst lookup performance. To improve the lookup
speed of the binary trie, a well-known data structure,
multi-bit trie, is introduced [1,2,3,6]. Multi-bit trie can be
divided into two categories, fixed-stride trie (FST) and
variable-stride trie (VST). In FST, the sizes of the strides
at the same level are the same. In contrast, the sizes of the
strides at the same level can be different in VST. Building
a multi-bit trie with a binary trie is actually choosing
several level positions (i.e., bit positions) in a binary trie
to perform expansion. How to decide these levels is the
critical issue of constructing multi-bit tries. Basically,
multi-bit tries with more expansion levels cost more
memory accesses for the search or update operations,
which means more search and update times; on the other
hand, more expansion levels makes memory requirement
of multi-bit tries smaller. The number of expansion levels
simply becomes a trade-off between search speed and
memory usage. Therefore, the current multi-bit tries
optimization schemes [2,3] are only focusing on the
instance: with a given number of expansion levels,

 2

finding the optimal multi-bit trie in terms of the memory
consumption.

Srinivasan and Varghese [2] use controlled prefix
expansion to construct the memory-efficient multi-bit
tries. Given the maximum number of memory accesses
allowed for one lookup operation (i.e., the maximum
number of trie levels), they use dynamic programming to
find the minimum total memory requirement for FST and
VST, respectively. The dynamic programming techniques
in [2] for FST work as follows. First, an auxiliary binary
trie is constructed according to a given routing table. Let
nodes(i) be the number of nodes at level i in the auxiliary
binary trie. Let],[rjT be the optimal memory

requirement for covering bit positions 0 through j by
using r levels (assuming that the leftmost bit position is
0). Then],[rjT can be computed using dynamic

programming. Thus, [2] generalized],[rjT to the

following dynamic programming recurrence:

[]






=

×++−−−∈=
+

−

12]1,[

2)1(]1,[}1,...,2{],[min
j

mj

jT

mnodesrmTjrmrjT

 The above recurrence terminates the (r-1)’th trie level
at bit position m, such that it minimizes the total memory
requirement. For prefixes at most W bits, we need to
compute],1[kWT − , where k is the number of levels in

the trie being constructed. This algorithm takes O(k×W2)
time. For the case of IPv4, W=32.

Let r-VST be a VST that has at most r levels. Let
V[N, r] be the cost (i.e., memory requirement) of the best
r-VST for a binary trie whose root is N. Sahni and Kim [3]
proposed the following dynamic programming recurrence
for V[N, r] :









=









−++∈=

+

∈
∑

1)(

)(

2]1,[

]1,[2)}(1...1{],[min

Nheight

NDQ

s

NV

rQVNheightsrNV
s

where DS(N) is the set of all descendents of N at level s of

N in binary trie and height(N) is the maximum level of
which the trie rooted at N has a node. When more than
one expansion level is permissible, the stride of the first
expansion level may be any number s that is between 1
and height(N)+1. For any such selection of s, the next
expansion level is level s of the binary trie whose root is
N. The sum of equation gives the cost of the best way to
cover all subtrees whose roots are at this next expansion
level. Each such subtree is covered using at most r-1
expansion levels. It is easy to see that V(R, k), where R is
the root of the overall binary trie for the given prefix set
P, is the cost of the best k-VST for P.

3. Proposed Scheme
In this section, we first illustrate how we define the

update cost for the insertion/deletion of a single prefix in
a multi-bit trie. After that, we propose two recursive
equations that apply the dynamic programming
techniques for update-optimal FST and VST, respectively.

A. Measuring the Update Cost of inserting/deleting

a Prefix
A multi-bit trie consists of a set of strides. A k-bit

stride actually corresponds to a k-bit expansion in the
binary trie, where k >= 1. A k-bit stride contains 2k
elements, where each element contains two fields,
next_ptr and next_hop. The field, next_ptr, is a pointer
that points to the stride of next level and the field,
next_hop, is the next-hop information associated with the
longest routing entry (prefix) that covers this element.

Since we want to obtain the update-optimal multi-
tries, we need the metrics to define the update cost for the
insertion/deletion of a single prefix. We first define two
time units, TRead and TWrite. TRead is the average time to
retrieve the information of next_ptr or next_hop stored in
one element. TWrite is the average time to modify the
contents of next_ptr or next_hop stored in one element.
Figure 1 illustrates how we measure the update cost when
a single prefix is updated in a multi-bit trie. In Figure 1,
the multi-bit trie M is a fixed 3-level trie for the prefixes
whose length are at most eight. The first level of M only
comprises one 3-bit stride (i.e., the root stride), the
second level consists of 2-bit strides, and the third level
consists of 3-bit strides. This also implies that the first
level covers the first three bits of the prefixes (i.e., from
bit position 0 to bit position 2, the leftmost bit position is
bit position 0), the second level covers the following two
bits (i.e., bit position 3 and bit position 4), and the last
level covers the last three bits (i.e., from bit position 5 to
bit position 7). Let P0 = 001110* is a prefix that is going
to be inserted into M. We assume during this insertion
process there is no newly created stride. We first expand
the length of P0 from 6 to 8. As the result, P0 is
transformed into four length-8 prefixes, which are P0a =
00111000, P0b = 00111001, P0c = 00111010, and P0d =
00111011. We first use the first three bits of these four
prefixes as the index (i.e., (001)2 = 110) to obtain the
next_ptr that is stored in the second element (whose index
is 1) of the root stride. Then the insertion process goes to
a second-level stride that is pointed by this next_ptr. At

P0: 001110* →

P0a: 00111000

P0b: 00111001

P0c: 00111010

P0d: 00111011

0

8

3

5

3
2

3

M

Insert P0 : 001 11 0 /6

1

TRead

TRead

TWrite

Update Cost of P0: 2····TRead + (28-6)····TWrite

0 2 3 4 5 7 6

1 0

1 0 4 5 7 6

2 3

2 3

Figure 1: The update cost measurement of a 3-level
multibit trie

 3

the second-level stride, bit position 3 and bit position 4 of
the prefixes are used as the index (i.e., (11)2 = 310) to
obtain the new next_ptr. Following this new next_ptr, the
insertion process arrives at a stride at the last level. After
modifying the four next_hop fields whose indexes are 0,
1, 2, and 3 (correspond to the last three bits of P0a, P0b,
P0c, and P0d), the insertion process for P0 is finished.

Since the insertion process of P0 retrieves two
next_ptr from two different strides and modifies four
next_hop of one stride, we define the update cost for this
insertion is 2．TRead +(28-6)．TWrite (we assume index to
one element only takes a slight time which can be
ignored). On the other hand, the cost of deleting P0 from
M is exactly the same way as the case of insertion. Based
on this measurement, we can calculate the update cost of
any kind of multi-bit tries. The update-optimal multi-bit
trie is the one with the minimal update cost.

B. Update Optimization For Fixed-Stride Tries

To insert/delete a prefix of length l in a fixed k-level
multi-bit trie, the update process starts at the root stride
and stops at a stride of level r such that the accumulative
number of covered bits from the first level to level r is
larger than or equal to l. Moreover, the accumulative
number of covered bits from the first level to level r-1 is
less than l. Let j be the accumulative number of covered
bits from the first level to level r. As described before, the
update cost for the prefix of length l will be

Write
lj

Read TTr ⋅+⋅− −2)1(. Furthermore, as nodes(i)

defined in [2] represents the total number of nodes at
level i in the auxiliary binary trie, we define pfx(l) as the
total number of prefixes whose prefix length are l in a
given update trace. For a given r (# of levels of a multi-
bit trie), let Optu[j,r] represent a fixed update-optimal
multi-bit trie that the accumulative number of covered

bits from the first level to level r is j. We define the
following recursive equations that can obtain the update-
optimal r-level multi-bit trie.

()()
{ 













×+×−×+−=

××=

∑

∑
+∈

−
−−∈

∈

−

},...,1{
Re

}1,...,1{

},...,1{

2)1()(]1,[min],[

)2()(]1,[

jml
Write

lj
adu

jrm
u

jl
Write

lj
u

TTrlpfxrmOptrjOpt

TlpfxjOpt

 The second equation is the terminative condition of
the first recurrence. The number of level, r, is set to 1 in
the second equation means that the second equation only
calculates the update cost for a 1-level multi-bit trie (i.e.,
a array consists of 2j elements). Hence, the update cost
for the prefix with length l will be 2j-l

．Twrite. Thus, the
total update cost for this 1-level multi-bit trie can be
obtained by simply summing up the update costs of each
kind of prefix length. A variable, m, divides the first
recursive equation into two parts, Optu[m,r-1] and

()()∑
+∈

− ×+×−×
},...,.1{

Re 2)1()(
jml

Write
lj

ad TTrlpfx , where

m is the accumulative number of covered bits from the
first level to level (r-1). This means the update cost of
Optu[j,r] has been divided into the update cost of
Optu[m,r-1] plus the update cost of the prefixes whose
length are larger than m. The update costs for a prefix
whose length is larger than m will cost (r-1) times of TRead
and 2j-l times of TWrite. Hence, the total update cost for the
prefixes whose length are larger than m is

()()∑
+∈

− ×+×−×
},...,.1{

Re 2)1()(
jml

Write
lj

ad TTrlpfx . Then

the recurrence goes to solve the problem of Optu[m,r-1]
and repeats the recurrence again and again till it
encounters the terminative condition. Figure 2 shows the
pseudo code that applies the dynamic programming
techniques to solve the proposed recursive equations. For
any given IPv4 update trace, since the maximum possible
prefix length of IPv4 is 32, variable j is initially set to 32.
For a given r (# of levels of the multi-bit trie), by the
initial invocation of FST_Opt_UpdCost(32,r) (i.e.,
Optu[32, r]), Figure 2 will return a r-level multi-bit trie
that has the minimal update cost.

C. Update Optimization for Variable-Stride Tries

We now consider how to obtain the update-optimal
variable-stride multi-bit trie (VST). For simplicity,
assume that we have built an auxiliary binary trie, and we
wish to convert this binary trie into an upate-optimal VST.

Algorithm FST_Opt_UpdCost (j, r)
// Initial invocation is FST_Opt_UpdCost (W, r),
// W is maximum possible length of prefixes
// r is a given number that represents the number of level
// Return a r-level FST with the minimal update cost
1 { min = ∞
2 if summation[pfx(1) to pfx(j)] = 0
3 then return 0
4 else {
5 if r = 1
6 then return Summation{pfx(i)×(2j–I×TRead), for i←1 to j}
7 else {
8 then for(m: r-1 to j-1) {
9 cost = FST_Opt_UpdCost(m, r–1)
10 + Summation{ pfx(i), for i←m+1 to j } × (r–1) × TRead,
11 + Summation{ pfx(i) × 2j–l × TWrite }, for i←m+1 to j
12 if min > cost
13 min = cost
14 else
15 then continue
16 }
17 then return min
18 }
19 }
20 }

Figure 2: Algorithm FST_Opt_UpdCost

Level 0

Level 1

Level r

Prefix number =

Prefix number =

s

N

R

()Rpfx

∑
∈)(

)(
RDN s

Npfx

Figure 3: The stride s partitions a binary trie T
whose root is R into one expansion level and
several subtrees rooted at N, where N∈ Ds(r)

N

N

…

…

 4

Unlike FST, we first choose the size of strides at the
last level of FST. In VST, we first choose the size of
stride at the first level of VST (i.e., the size of the root
stride of VST). Let R be the root of the auxiliary binary
trie T. We start with the binary trie T (Figure 3) and select
an s-bit stride as the root stride to partition the binary trie
into 2s subtries. Let Dl(R) be the level l (the root (R) is at
level 0) descendents of the root of the root R of T. Note
that D0(R) is just R and D1(R) is the children of R. When
the trie is partitioned with stride s, each subtrie ST(N),
rooted at node N∈DS(R) defines a partition of the routing
table. Note that 0＜s ≦ T.height＋1, where T.height is
the height of T (i.e., maximum level at which there is a
descendent of R). When s = T.height＋1, DS(R) = ψ. Let
pfxl(N) be number of prefixes at level l of the ST(N), and
pfx(N) denote number of prefixes those reside at ST(N)
(i.e., those prefixes covered by N).

To use recursive partition effectively, we must
select the stride s appropriately for each expansion level.
For this selection, we set up a dynamic programming
recurrence. As that scheme we used for solving update-
optimal FSTs, given the number of expansion level r, this
recurrence calculates expectation update cost of all r-VST
to obtain the best VST with smallest cost. To calculate
update cost of a r-VST, which actually the amount of
update prefixes expanded to, we use prefix numbers of a
level instead of prefix probability of a length. Because in
a VST every trie-node has different strides, makes
prefixes at same level in binary tire could be expanded to
different number of element in VST. We need to the
information of prefix numbers that covered by each
subtrie in the binary trie T.

Let Opt(N, j, r) be the minimum update cost by a
recursively partitioned representation defined by levels 0
through j of ST(N) (i.e., the subtrie of T rooted at N). At

beginning, j is height(N) merely. From the definition of
recursive partitioning, the choices for stride s in Opt(N, j,
r) are 1 through j-1. The update cost of prefixes at first s
levels at ST(N) is Opt(N, s, 1), and that of the rest prefixes
is prefix number multiple one memory read time(i.e, TR)
plus update cost of each subtrie. When r = 1, ST(N) is
directly converted to an expanded array, so minimum
update cost, i.e., Opt(N, j, 1) is totally the amount of
prefixes expansion. Therefore, from the definition of
recursive partitioning, we obtain following dynamic
programming recurrence for Opt(N, j, r):

() ()()

()
{ }

()














⋅×=









⋅+−−+
+−∈

=

−

∈

∈

∑

∑

Write
lj

jl
l

NDQ
ad

TNpfxjNOpt

TQpfxrsjQOptsNOpt
rjs

rjNOpt
S

2)(1,,

)(1,,)1,,(
}1,...,1{

,,

...1

)(
Re

min

4. Experiment Results
A. Environment

We programmed our dynamic programming
algorithms and the original CPE algorithm [2] in c code,
and all experiments were conducted on a 2.4-GHz
Pentium IV PC with 512KB L2 Cache and 1 GB DDR
RAM. All programs were compiled by using the GCC-
3.3.2 compiler and optimization -level 03 is used.
B. Results for IPv4

Our experiments were conducted by using five real
IPv4 BGP routing tables (obtained from [4] and [5]).
Table 1 shows the stats of these five routing tables. To
calculate the update cost, we need the update traces for
these five tables. We first analyze the update traces
obtained from [8] then generate the appropriate update
traces for each tables. These synthetic update traces are
proportional to those we analyzed from [8]. According to
the synthetic update traces, we can obtain the stats of
pfx(l), where 1≤ l ≤ 32. Since the trends of the
experimental results for five IPv4 tables are almost the
same, here we only show the results for the table named
canada.

Table 2 shows the update-optimal FST that are
generated by the proposed recurrences in different levels.
The notations, UCPE(3,1) and UCPE(1,1), represent the
proposed update-optimal CPE that are measured by using
the ratio of TWrite and TRead in 3 : 1 and 1 : 1, respectively.
As we can see in Table 2, the result of our UCPE(3,1) in
7 levels is 16-20-22-24-26-27-32. These seven numbers
represents the seven different levels of the auxiliary
binary trie (the root node of the binary trie is at level 0). It
implies that the root stride is a 16-bit stride and the strides
at the second level of this 7-level FST are 4-bit (20-16=4)
strides (expanded by the 17’th bit to the 20’th bit). The
sizes of the strides at other levels can be derived in the

Database Number of
prefix

Number of
24-bit

prefixes

Percentage
of Prefix in

24-bit
canada 157118 85938 54.6%
as120k 127071 69678 54.8%

oix-2002-4 124824 68978 55.2%
oix-2005-4 163574 85305 52.1%

funnet 41709 25206 60.4%

Table 1: The stats of the IPv4 BGP routing tables

Database Number of prefix
AS64471 888

AS2.0 893
Generated1 (5000_table) 5108
Generated2 (10000_table) 10088

Generated3 (big_table) 20070

Table 3: The stats of five IPv6 routing tables

 CPE UCPE(3,1) UCPE(1,1)
4-level 16-21-24-32 17-21-24-32 17-21-24-32

5-level
16-20-22-

24-32
16-20-22-24-

32
17-21-24-26-

32

6-level
12-17-20-
22-24-32

16-20-22-24-
26-32

17-21-24-26-
27-32

7-level
11-16-18-

20-22-24-32
16-20-22-24-

26-27-32
17-21-24-26-

27-28-32

8-level
8-12-16-18-
20-22-24-32

16-20-22-24-
26-27-28-32

17-21-24-26-
27-28-29-32

Table 2: The chosen partition levels of various

schemes for IPv4 routing tables

 5

same way. In Table 1, it shows that prefixes with length
24 are the majority in the routing tables. Moreover, in [8],
it reveals that the update frequency of prefixes with
length 24 is the highest among all prefix length. Hence, to
minimize the update costs due to the length-24 prefixes,
our UCPE will certainly expand the strides to level 24 of

the auxiliary binary tries. In contrast, in order to minimize
the memory cost due to the expansion of length-24
prefixes, CPE [2] will also certainly expand the strides to
level 24 of the auxiliary binary trie. This is the reason
why CPE [2] and the proposed UCPE will all choose
level 24 of the binary trie to expand the strides in Table 2.

Figure 4 and Figure 5 show the experimental results
in terms of search time, update time, and memory usage
for FST and VST, respectively. As we can see, with the
increase of the number of level of multi-bit tries, the
search speed of our UCPE is more efficient than CPE.
This is due to our UCPE expands more bits at each level
of multi-bit trie than CPE [2]. Take the sixth row of Table
2 for example, assume the length of the longest matching
prefix for an incoming packet is 24. It needs 7 memory
accesses for this packet to find the longest matching
prefix at the 7’th level of 8-level CPE. However, it only
needs 4 memory accesses in our 8-level UCPE(3,1) and 3
memory accesses in our 8-level UCPE(1,1). This is the
reason why our UCPE has faster search speed than CPE
[2]. Since our UCPE is the update-optimal multi-bit tries,
our UCPE uses 26% less update time than CPE when the
level of multi-bit tries is 8. However, since CPE is the

Figure 4(a)

Figure 4(b)

Figure 4(c)

 Figure 4: Performance of FSTs designated by CPE and
proposed UCPE in terms of (a) time requirement for
search (in nsec), (b) time requirement for update (in
nsec), and (c) memory requirement for update (in
KBytes)

 CPE UCPE(3,1) UCPE(1,1)
4-level 24-36-48-

64
28-38-48-64 28-38-48-64

5-level 20-29-38-
48-64

24-34-40-48-
64

24-34-40-
48-64-

6-level 18-25-32-
40-48-64

24-32-38-42-
48-64

24-32-38-
42-48-64

7-level 17-23-29-
34-40-48-

64

24-32-36-40-
42-48-64

24-32-36-
40-42-48-64

8-level 16-22-27-
32-37-42-

50-64

24-32-36-38-
40-42-48-64

24-32-36-
38-40-42-

48-64
10-

level
9-19-23-
27-31-31-
38-42-50-

64

16-28-32-36-
38-40-42-44-

48-64

24-32-36-
38-40-42-

46-48-49-64

Table 4: The chosen partition levels of
various schemes for IPv6 routing tables

Figure 5(a)

Figure 5(b)

Figure 5(c)

Figure 5: Performance of VSTs designated by CPE and
proposed UCPE in terms of (a) time requirement for
search (in nsce), (b) time requirement for update (in
nsce), and (c) memory requirement for update (in
KBytes)

 6

memory-optimal multi-bit tries, our UCPE(3,1) and
UCPE(1,1) require extra 1.4 and 1.9 Mbytes memory
usage than CPE in the worst case, respectively.

C. Results for IPv6

Table 3 shows the stats of five IPv6 routing tables
we used. The first two tables (AS6447 and AS2.0) are the
real IPv6 routing tables that are obtained from [5]. As we
can see, the current IPv6 tables are still very small, tables
contain more than 2000 entries are rare. Thus, we use the
methodology proposed in [7] to generate three large IPv6
tables (Generated_1, Generated_2, and Generated_3). As
in IPv4, we analyze the update traces obtained from [8]
and generate the synthetic update trace for each IPv6
table. Although the address space of IPv6 is 128 bits,
there are almost no tables contain prefixes with length
128. That is due to the last 64 bits of the IPv6 addresses
are the MAC addresses which are not able to be obtained.
As the results, we only deal with the first 64 bits of any
prefixes. Table 4 shows the experimental results for r-
level FST, where 4≤ r ≤ 10. As we can see in Table 4,
our UCPE expand more bits than CPE [2] at each level of
r-level FST. Hence, our UCPE needs less memory
accesses to find the longest matching prefix for every

incoming packet. As the results, our UCPE has better
search time than CPE [2]. Moreover, since prefixes with
length 32, 38, and 40 are the prefixes that have the high
update frequency, our UCPE usually naturally expand the
strides to the 32’th, 38’th and 40’th levels of the auxiliary
binary trie. Since the trend of IPv6 experimental results
are like the results in IPv4, here we only use Figure 6 to
show the performance comparison of r-level FST for
IPv6 table, Generated 1 (5000_table). In a 10-level FST,
our UCPE uses 27% and 44% less time than CPE [2] for
search and update, respectively. However, the drawback
of our UCPE is that the memory usage is proportional to
the longer address space of IPv6.

5. CONCLUSION
Our UCPE optimization schemes reduce the update

overhead of multi-bit tries without losing the fast lookup
speed. Compared with the previous scheme Controlled
Prefix Expansion (CPE) [2], the proposed solutions
provide a faster lookup and update speeds. In IPv4
lookup, we have reduced update cost reach to 30 % when
the worst case memory access is bounded to 8. Beside,
our solutions also provide a faster lookup speed than CPE
in general case. For multi-bit tries with large number of
level, the improvement of update and search speed by our
UCPE are more significant. We also tested our UCPE
scheme with IPv6 routing tables. As the results of IPv4,
the performances of update and search are improved by
our UCPE. However, the memory usage of our UCPE
appears to be much larger than CPE. This is expectable
because the address space of IPv6 is much longer than
IPv4. This case makes the proposed UCPE able to be
improved by considering the constraint of the memory
usage constraint. We considered this issue as a future
works of this paper.

References
[1] M.A.Ruiz-Sanchez, E.W.Biersack, and W.Dabbous,

“Survey and Taxonomy of IP Address Lookup
Algorithm,” IEEE Network, Vol.15, pp.8- 23, 2001.

[2] V. Srinivasan and G. Varghese, “Fast address lookups
using controlled prefix expansion,” ACM
Transactions on Computer Systems, vol. 17, no. 1,
pp. 1–40,Feb. 1999.

[3] S. Sahni and K. S. Kim, “Efficient Construction Of
Multibit Tries For IP Lookup,” IEEE/ACM
Transactions on Networking, vol.11, no.4, pp.650-
662, 2003.

[4] D. Meyer, University of Oregon Route Views Archive
Project, at http://archive.routeviews.org/.

[5] BGP Routing Table Analysis Reports,
http://bgp.potaroo.net/.

[6] H. Chao, “Next Generation Routers,” Proceeding of
the IEEE, vol. 90, no. 9, pp. 1518-1558, September
2002.

[7] K. Zheng and B. Liu, “V6Gene: a scalable IPv6 prefix
generator for route lookup algorithm benchmark,”
proceeding of AINA 2006, pp. 147-152, April 2006.

[8] RIPE Network Coordination Centre,
http://www.ripe.net/.

Figure 6(a)

Figure 6(b)

Figure 6(c)

Figure 6: Performance of IPv6 FSTs designated by CPE
and proposed UCPE in terms of (a) time requirement
for search (in nsce), (b) time requirement for update (in
nsce), and (c) memory requirement for update (in
KBytes)

