Update-aware Controlled Prefix Expansion for
Fast IP Lookups

Yeim-Kuan Chang, Yung-Chieh Lin, and Kuan-Ying Ho

National Cheng Kung University, Tainan, Taiwan
{ykchang, p7894110, p7695139}@mail.ncku.edu.tw

Abtract-In high performance routers design, fast IPoften used to represent the routing tables [1,R,B/6lti-

address lookup is always a challenge. In orderhimio fast

lookup speed, multi-bit tries are often used torespnt the
routing tables [1,2,3,6]. The drawbacks of multitbies are the
large memory usage and extensive update cost. duceethe

memory usage of multi-bit tries, Srinivasan and ghase

proposed a scheme called Controlled Prefix Expan€&t) [2]
that uses the dynamic programming technique toirbtze

optimal multi-bit tries in terms of memory usageurthermore,

current backbone routers usually run the Border \&ate
Protocol (BGP). BGP may cause a few hundred of updade

second. To make multi-bit tries adequate to thgsdaies, a
series of multi-bit tries nodes need to be modifiohce these
updates can seriously affect the lookup speed, we&d rnto

minimize these update cost. However, CPE does nuotetn

this issue. In this paper, we explore the optintizaissue in

terms of the update cost. We want to find an updptamal

multi-bit tries that still have the efficiency addkup speed and
memory usage. Contrast to CPE, our solutions achae88%

reduction of the update overhead and improve 37%hef
search speed. Besides, we also examine our scheniBya

routing tables. The experimental results show thatscheme
can also scale well in IPv6.

Keywords: |IP address lookupmulti-bit tries, route
update, controlled prefix expansion

1. Introduction

bit tries can finish one lookup operation in a bdech
number of memory references. However, the drawbacks
of multi-bit tries are the large memory consumptand
the poor update performance due to the routes elsang
To reduce the memory consumption of multi-bit tries
many researchers have focused on the optimizatmres

of multi-bit tries in terms of the memory consunopti
[2,3]. In contrast, papers deal with the updatéroplt
multi-bit tries are rare. This paper focuses ouwlifig the
optimal multi-bit tries in terms of update costs the
fixed-stride multi-bit tries (FST) and the varialsgide
multi-bit tries (VST), respectively. The rest ofetipaper

is organized as follows. In section 2, we presemt a
overview of previous works on IP address lookup. In
section 3, we illustrate the concepts and propediehe
proposed optimization techniques of multi-bit trid$he
extensive experimental results are shown in secfion
Finally, a brief conclusion is remarked in sectton

2. Related works

In backbone routers, IP address lookup is the most
critical function in the packet forwarding proceBsnary
trie (i.e., 1-bit trie) [1,6] is the basic dataustiure that is
used in the IP address lookup problem. Binary isie
efficient in the updates of routing routes. Howevehas

The advent of the World Wide Web (WWW) has the worst lookup performance. To improve the lookup

doubled the network traffic on the Internet eveewf
months. Besides, many emerging networking apptoati
such as video conferencing, remote distance legyaimd
digital libraries, are expected to create more arate
traffic. If the Internet wants to continue to fushigood

speed of the binary trie, a well-known data strigtu
multi-bit trie, is introduced [1,2,3,6]. Multi-bitie can be
divided into two categories, fixed-stride trie (BSdnd

variable-stride trie (VST). In FST, the sizes of #trides
at the same level are the same. In contrast, zles sif the

quality-of-service (QoS), four key issues must bestrides at the same level can be different in VEilding
addressed in the designing of the next generat®n la multi-bit trie with a binary trie is actually cbhsing

routers: 1) higher link speeds; 2) better datauyhput; 3)
faster packet forwarding rate; and 4) quick adamato

the routing changes. The solutions to the first tsgues
are now readily available. For example, fiber-optbles

several level positions (i.e., bit positions) imiaary trie
to perform expansion. How to decide these levelthés
critical issue of constructing multi-bit tries. Beally,
multi-bit tries with more expansion levels cost mor

can provide faster link speeds, and new IP-swighinmemory accesses for the search or update operations

technology (layer-3 switching or multi-layer swiitab)
can be used to transmit packet from the input fiater of
a router to the corresponding output interface attim
gigabit speeds [6]. This paper deals with the other

which means more search and update times; on bigg ot
hand, more expansion levels makes memory requiremen
of multi-bit tries smaller. The number of expanslewels

simply becomes a trade-off between search speed and

issues: forwarding packets at high speeds whilg stimemory usage. Therefore, the current multi-bit strie

allowing for frequent updates of the routing tables

optimization schemes [2,3] are only focusing on the

In order to achieve high packet forwarding ratenstance: with a given number of expansion levels,

multi-bit tries are the well-know data structurésittare

finding the optimal multi-bit trie in terms of tbmemory N in binary trie andheigh{N) is the maximum level of
consumption. which the trie rooted all has a node. When more than

Srinivasan and Varghese [2] use controlled prefixone expansion level is permissible, the stridehef first
expansion to construct the memory-efficient muiti-b expansion level may be any number s that is betvieen
tries. Given the maximum number of memory accesseand heigh{N)+1. For any such selection of s, the next
allowed for one lookup operation (i.e., the maximumexpansion level is level s of the binary trie whoset is
number of trie levels), they use dynamic prograngrim N. The sum of equation gives the cost of the best twa
find the minimum total memory requirement for FSTda cover all subtrees whose roots are at this nexamsipn
VST, respectively. The dynamic programming techegu level. Each such subtree is covered using at mdst
in [2] for FST work as follows. First, an auxiliabinary expansion levels. It is easy to see W@, K, whereR is
trie is constructed according to a given routingdalet the root of the overall binary trie for the giverefix set
nodegi) be the number of nodes at levéh the auxiliary P, is the cost of the bektVST for P.

binary trie. Let T[],r] be the optimal memor

Y [J.] : > op SOl g, Proposed Scheme
requirement for covering bit positions O througtby _ _ o _
usingr levels (assuming that the leftmost bit position is In this section, we first illustrate how we defitre
0). Then T[j,r] can be computed using dynamic update cost for the insertion/deletion of a singlefix in

programming. Thus, [2] generalized[j,r] to the a multi-bit trie. After that, we propose two redues

. . g _ equations that apply the dynamic programming
following dynamic programming recurrence: techniques for update-optimal FST and VST, respelti

T03,r1 = MiN o,y [TIMr -1+ nodegm-+1 x 2]
: i A. Measuring the Update Cost of inserting/deleting
Tl =2 a Prefix
The above recurrence terminates the)'th trie level A multi-bit trie consists of a set aftrides A k-bit
at bit positionm, such that it minimizes the total memory stride actually corresponds to kabit expansion in the
requirement. For prefixes at mo®f bits, we need to binary trie, wherek >= 1. A k-bit stride contains ‘2
computeT[W -1k], wherek is the number of levels in elements where each element contains two fields,
the trie being constructed. This algorithm takékxW?) nextptr and next hop. The field, next ptr, is a pointer
time. For the case of IPV/=32. that points to the stride of next level and theldfie
Let r-VST be a VST that has at mastevels. Let nexthop is the next-hop information associated with the
V[N, 1] be the cost (i.e., memory requirement) of the bedongest routing entry (prefix) that covers thisneémt.

r-VST for a binary trie whose root & Sahni and Kim [3] Since we want to obtain the update-optimal multi-
proposed the following dynamic programming recuceen tries, we need the metrics to define the updatefooshe
for V[N, 1] : insertion/deletion of a single prefix. We first oef two

retrieve the information afiext ptr or next hop stored in

_ one elementTye iS the average time to modify the
V[N 1] = 2ot contents ofnext ptr or next hop stored in one element.

whereDg(N) is the set of all descendentshofit levelsof Figure 1 illustrates how we measure the updatewhbsh

a single prefix is updated in a multi-bit trie. figure 1,

. time units, Treag @aNd Twrite- Tread IS the average time to
VIN,r]=Min SH{1...1+height(N)} |:2S + ZV[Q,F —l]}

QOD4(N)

0 - M the multi-bit trieM is a fixed 3-level trie for the prefixes
43 Py 001110% > whose length are at most eight. The first leveMobnly
3 x P 00111000 comprises one 3-bit stride (i.e., the root strid#)e
/\ \ 2 o second level consists of 2-bit strides, and thedthével
5 Pop: 00111001 consists of 3-bit strides. This also implies tHad first
Poc: 00111010 level covers the first three bits of the prefixes.(from
3 Pos 00111011 bit position 0 to bit position 2, the leftmost pibsition is
8 bit position 0), the second level covers the follagvtwo
bits (i.e., bit position 3 and bit position 4), atite last
InsertP, : 001 11 0 /6 level covers the last three bits (i.e., from bisition 5 to

ol 2] 2] 3] 4] 5] 6] 7] bit position 7). LetP, = 001110* is a prefix that is going

to be inserted intdM. We assume during this insertion
process there is no newly created stride. We dixgiand
the length of P, from 6 to 8. As the resultP, is
transformed into four length-8 prefixes, which &g =
ol 1l 2 3] 4] 5] 6] 7] 00111000,Pg, = 00111001 P, = 00111010, ancPOd =
T 00111011. We first use the first three bits ofsthéour

o prefixes as the index (i.e., (0Q1F 1,0 to obtain the
Updat¢ Cos 0f Py: 2Treag + (277) Twite next ptr that is stored in the second element (whose index
Figure 1: The update cost measurement of a 3-level is 1) of the root stride. Then the insertion precgses to

multibit trie a second-level stride that is pointed by théxt ptr. At

the second-level stride, bit position 3 and bitifjs 4 of bits from the first level to level is j. We define the
the prefixes are used as the index (i.e., {ElBx) to following recursive equations that can obtain tpeaie-
obtain the newext ptr. Following this newnext ptr, the optimalr-level multi-bit trie.

insertion process arrives at a stride at the &stll After . . o
modifying the fournext hop fields whose indexes are 0, [PulI"1= 00, Opt“[m"_l]+lmr§__(_f;x(')x(('_l)xTRea“+2 o)
1, 2, and 3 (correspond to the last three bit®gf Po, { OpLidl= 3 pIXX(2 KTy

Poe, andPyg), the insertion process fé is finished. 0L}

Since the insertion process & retrieves two The second equation is the terminative itwmdof
next ptr from two different strides and modifies four the first recurrence. The number of lewgljs set to 1 in
next hop of one stride, we define the update cost for thishe second equation means that the second equatipn
insertion is 2 Tread (2 - Twrite (We assume index to calculates the update cost for a 1-level multitt (i.e.,
one element only takes a slight time which can b& array consists of Zlements). Hence, the update cost
ignored). On the other hand, the cost of deleRpgrom for the prefix with length will be 27 - Tyie. Thus, the
M is exactly the same way as the case of inseflased total update cost for this 1-level multi-bit triearc be
on this measurement, we can calculate the updateofo obtained by simply summing up the update costsaohe
any kind of multi-bit tries. The update-optimal nmimidit kind of prefix length. A variablem, divides the first
trie is the one with the minimal update cost. recursive equation into two part®Qpt[mr-1] and

B. Update Optimization For Fixed-Stride Tries

To insert/delete a prefix of lengthn a fixedk-level
multi-bit trie, the update process starts at thet siride
and stops at a stride of lewesuch that the accumulative
number of covered bits from the first level to leves
larger than or equal tb. Moreover, the accumulative
number of covered bits from the first level to lewdl is
less tharl. Letj be the accumulative number of covered il o
bits from the fi:st level to level As described before, the and 2" fimes ofTwse. Hence, the total update cost for the

_ i prefixes whose length are larger tham is
update cost for the prefix of length will be i
(r -1) My, +2'" T, - Furthermore, asnodegi) > (Pfx(|)X ((r =D XTgeaa +2 ><TWrite)) - Then

defined in [2] represents the total number of nodes
leveli in the auxiliary binary trie, we defin@x(l) as the
total number of prefixes whose prefix length &rim a
given update trace. For a giver{# of levels of a multi-
bit trie), let Opty[j,r] represent a fixed update-optimal
multi-bit trie that the accumulative number of crec

m is the accumulative number of covered bits from th

first level to level (-1). This means the update cost of
Opt[j,r] has been divided into the update cost of
Opt[mr-1] plus the update cost of the prefixes whose
length are larger tham. The update costs for a prefix

whose length is larger thanwill cost (r-1) times 0fTreaq

the recurrence goes to solve the problen©pf[m,r-1]

and repeats the recurrence again and again till it
encounters the terminative condition. Figure 2 shive
pseudo code that applies the dynamic programming
techniques to solve the proposed recursive equatfeor
any given IPv4 update trace, since the maximumiplass
prefix length of IPv4 is 32, variabjes initially set to 32.
Algorithm FST_Opt_UpdCosi,(r) For a givenr (# of levels of the multi-bit trie), by the
/I'nitial invocation is FST_Opt_UpdCof¥, 1), initial invocation of FST_Opt_UpdCost(3®, (i.e.,

/I Wis maximum possible length of prefixes A .) Dl
/'t is a given number that represents the numbewef le Opt[32, r]), Figure 2 will return ar-level multi-bit trie

/I Return a-level FST with the minimal update cost that has the minimal update cost.
1 { min=o
2 if summationpfx(1) topfx(j)] =0 C. Update Optimization for Variable-Stride Tries
j elst:{e” return 0 We now consider how to obtain the update-optimal
5 ifr=1 variable-stride multi-bit trie (VST). For simpligit
6 then return Summationpfx(i)x(2~'xTreaa), for i<1toj} assume that we have built an auxiliary binary tieg we
7 dse{ wish to convert this binary trie into an upate-omtl VST.
8 then for(m: r-1toj-1) {
9 cost = FST_Opt_UpdCost(1)
10 + Summationpfx(i), for i<-m+1toj} x (r—1)x Treas Levelo Kk
11 + Summationpfx(i) x 27 x Twie }, for i<-mt+1toj
12 if min> cost)
13 min = cost Prefix number =pf)(R)
14 else
15 then continue Levell _ WM N - A\N__ ¥ ___
16 }
17 then return min Prefix number =)_pf{N)
18 } ND,(R)
19 } Levelr -
20 . . " . .
} Figure 3: The strides partitions a binary triel
) _ - whose root isR into ore expansion level ai
Figure 2: Algorithm FST_Opt_UpdCost several subtrees rootedMitwhereNL] D(r)

Database Number of, Number of Percentage
prefix 24-bit of Prefix in
prefixes 24-bit

canada 157118 85938 54.6%
as120k 127071 69678 54.8%
0ix-2002-4 124824 68978 55.2%
0ix-2005-4 163574 85305 52.1%
funnet 41709 25206 60.4%

Table 1: The stats of the IPv4 BGP routing tables

Unlike FST, we first choose the size of stridethat
last level of FST. In VST, we first choose the sife
stride at the first level of VST (i.e., the size th& root
stride of VST). LetR be the root of the auxiliary binary
trie T. We start with the binary tri€ (Figure 3) and select
ans-bit stride as the root stride to partition thedvintrie
into 2° subtries. LeD|(R) be the level (the root R) is at
level 0) descendents of the root of the rBadf T. Note
thatDy(R) is just R and4(R) is the children oR. When
the trie is partitioned with strids, each subtrieST(N),
rooted at nod®&[1D«R) defines a partition of the routing
table. Note that &s = T.height-1, whereT.heightis
the height ofT (i.e., maximum level at which there is a
descendent dR). Whens = T.heighti-1, DgR) = ¢ . Let
pfx(N) be number of prefixes at leviebf the ST(N), and
pfx(N) denote number of prefixes those resideSHiN)
(i.e., those prefixes covered b.

To use recursive partition effectively, we must

optimal FSTs, given the number of expansion leytiis
recurrence calculates expectation update cost oAb T
to obtain the best VST with smallest cost. To daleu
update cost of a-VST, which actually the amount of
update prefixes expanded to, we use prefix numbieas
level instead of prefix probability of a length. &ise in

a VST every trie-node has different strides, make

prefixes at same level in binary tire could be exjea to

different number of element in VST. We need to the

information of prefix numbers that covered by eac
subtrie in the binary trig.

Let Opt(N, j, r) be the minimum update cost by a
recursively partitioned representation defined éyels 0
through j of ST(N)(i.e., the subtrie of rooted atN). At

CPE UCPE(31) | UCPE(L1)
4-level | 16-21-24-32| 17-21-24-32 | 17-21-24-32
Elovel | 16-20-22- | 16-20-22-24- | 17-21-24-26-

24-32 32 32
6level | 12-17-20- | 16-20-22-24- | 17-21-24-26-

22-24-32 26-32 27-32
Tevel | 11-16-18- | 16-20-22-24- | 17-21-24-26-

20-22-24-32| 26-27-32 27-28-32
glovel | &-12-16-18-| 16-20-22-24- | 17-21-24-26-
20-22-24-32| 26-27-28-32 | 27-28-29-32

Table 2: The chosen partition levels of various

schemes for IPv4 routing tables

Database Number of prefix
AS64471 888
AS2.0 893
Generatedl (5000 _table) 5108
Generated2 (10000 _table) 10088
Generated3 (big_table) 20070

Table 3: The stats of five IPv6 routing tables

beginning,j is heigh{N) merely. From the definition of
recursive partitioning, the choices for stride ©jpt(N, j,

r) are 1 through-1. The update cost of prefixes at fisst
levels atST(N) is Opt(N, s, 3, and that of the rest prefixes
is prefix number multiple one memory read time(iLg),
plus update cost of each subtrie. Whes 1, ST(N) is
directly converted to an expanded array, so minimum
update cost, i.e.Opt(N, j, 1) is totally the amount of
prefixes expansion. Therefore, from the definitioh
recursive partitioning, we obtain following dynamic
programming recurrence f@pt(N, j, r):

min {Op«N,sl) + Y (optQ. j-sr-1)+ pix(Q) Erw)}

Opl(N’]’r):sD{],...,j—Hl} e

optN, 1)= z }pfx(N)x(z"‘ M)
= EW]

4. Experiment Results
A. Environment

We programmed our dynamic programming
algorithms and the original CPE algorithm [2] icade,
and all experiments were conducted on a 2.4-GHz

3.3.2 compiler and optimization -level 03 is used.
B. Resultsfor IPv4

Our experiments were conducted by using five real
IPv4 BGP routing tables (obtained from [4] and [5])
Table 1 shows the stats of these five routing table
calculate the update cost, we need the updatestface
these five tables. We first analyze the updateeac

dbtained from [8] then generate the appropriateatgd

traces for each tables. These synthetic updatedrare
roportional to those we analyzed from [8]. Accaglio
he synthetic update traces, we can obtain the stht
pfx(1), where 1< | < 32. Since the trends of the
experimental results for five IPv4 tables are alinbe
same, here we only show the results for the tablaeu
canada

Table 2 shows the update-optimal FST that are
generated by the proposed recurrences in difféesets.
The notations, UCPE(3,1) and UCPE(1,1), repredsat t
proposed update-optimal CPE that are measuredibyg us
the ratio ofTyyite andTreagin 3 : 1 and 1 : 1, respectively.
As we can see in Table 2, the result of our UCPE(i,
7 levels is 16-20-22-24-26-27-32. These seven musb
represents the seven different levels of the anyili
binary trie (the root node of the binary trie ideatel 0). It
implies that the root stride is a 16-bit stride dmel strides
at the second level of this 7-level FST are 4-2t-16=4)
strides (expanded by the 17'th bit to the 20'tH.blthe
sizes of the strides at other levels can be derinettie

CPE UCPE(3,1) | UCPE(L1)
A-level | 24-36-48- | 28-38-48-64 | 28-38-48-64
64
S5-level | 20-29-38- | 24-34-40-48-| 24-34-40-
48-64 64 48-64-
6-level | 18-25-32- | 24-32-38-42-| 24-32-38-
40-48-64 48-64 42-48-64
7-level | 17-23-29- | 24-32-36-40-| 24-32-36-
34-40-48- | 42-48-64 | 40-42-48-64
64
8-level | 16-22-27- | 24-32-36-38-| 24-32-36-
32-37-42- | 40-42-48-64 | 38-40-42-
50-64 48-64
10- 9-19-23- | 16-28-32-36-| 24-32-36-
level | 27-31-31- | 38-40-42-44-| 38-40-42-
38-42-50- 48-64 46-48-49-64
64

Table 4: The chosen partition levels of
various schemes for IPv6 routing tables

same way. In Table 1, it shows that prefixes withgth
24 are the majority in the routing tables. Moreove(8],
it reveals that the update frequency of prefixeshwi
length 24 is the highest among all prefix lengtenkk, to
minimize the update costs due to the length-24ixmef
our UCPE will certainly expand the strides to le2élof

Search Time (canada)

s
500 /
400 7{)4‘—) —01 414752
o [4 b A »
3 300 7
i=
200

‘—O—CPE == UCPE(3,1) = UCPE(],I)F

4 5 6 7 8
number of levels

Figure 4(a)

Update Time (canada)

» 1122.368

{1 827.008

nsec
=
=]
]

[[—e—cPE —a—UCPE(L1) —D—UCPEB,uf

4 5 6 7 8
number of levels

Figure 4(b)

Memory Usage (canada)

7000

P=1
)

A A A
6000 - : : :

we : : :
5000 {7 - {1 5058

4000

KB

3000

2000

1000

—e—CPE —5—UCPE(3,1) —&—UCPE(L1)]

4 5 6 7 8
number of levels

Figure 4(c)

Figure 4 Performance of FSTs designated by CPE
proposed UCPE in terms of (a) time requiremen
search (in nsec), (b) time requirement for updat
nsec), and(c) memory requirement for update
KBytes)

Search Time (canada)

500 509.6
400 ——

1 ———— {35310
300 gl

a

nsec

200

100

[—+—CPE —=—UCPE(3,1) —&—UCPE(LL)]

3 4 5 6 7 8
number of levels

Figure 5(a)
Update Time (canada)
1000
o000 __—% 947232
800
200 ~ kl—-—"‘/ - [666.848
o 600 + : »
2 500
< 400
300
200
100 1 —#—CPE ={@=UCPE(3,1) —& UCPE(l,lDI»
0 : :
3 4 5 6 7 8
number of levels
Figure 5(b)
Memory Usage (canada)
18000 H H 1
[; . :
16000 & H H H
14000 \\ o * & & W 13351156
12000 ‘ ‘

o 10000
8000
6000
4000
2000

—

5984.636

}—Q—CF’E—G =UCPE(3,1) = UCPE(1,1)|>

3 4 5 6 7 8
number of levels

Figure 5(c)

Figure 5:Performance of VSTs designated by CPE
proposed UCPE in terms of (a) time requiremen
search (in nsce), (b) time requirement for updat
nsce), and (c) mmory requirement for update
KBytes)

the auxiliary binary tries. In contrast, in ordembinimize
the memory cost due to the expansion of length-24
prefixes, CPE [2] will also certainly expand thedss to
level 24 of the auxiliary binary trie. This is tleason
why CPE [2] and the proposed UCPE will all choose
level 24 of the binary trie to expand the stride3 able 2.
Figure 4 and Figure 5 show the experimental results
in terms of search time, update time, and memoagels
for FST and VST, respectively. As we can see, \hth
increase of the number of level of multi-bit trigbe
search speed of our UCPE is more efficient than .CPE
This is due to our UCPE expands more bits at eaw#l |
of multi-bit trie than CPE [2]. Take the sixth raf Table
2 for example, assume the length of the longestmmag
prefix for an incoming packet is 24. It needs 7 rogm
accesses for this packet to find the longest magchi
prefix at the 7'th level of 8-level CPE. However only
needs 4 memory accesses in our 8-level UCPE(3dLBan
memory accesses in our 8-level UCPE(1,1). Thidhés t
reason why our UCPE has faster search speed then CP
[2]. Since our UCPE is the update-optimal multipies,
our UCPE uses 26% less update time than CPE wigen th
level of multi-bit tries is 8. However, since CPg& the

incoming packet. As the results, our UCPE has bette
Search Time (5000_table) search time than CPE [2]. Moreover, since prefixih
length 32, 38, and 40 are the prefixes that hagehtbh

400
350 354.432

200] — s update frequency, our UCPE usually naturally expted
g = i 5075 strides to the 32'th, 38'th and 40'th levels of txiliary
2 binary trie. Since the trend of IPv6 experimentgults
100 ‘ are like the results in IPv4, here we only use Fédhito
” | et —e-ucrepn) —a-uveeena}- show the performance comparison wfevel FST for
2 6 8 10 IPv6 table, Generated 1 (5000 _table). In a 10HE®T,
number of levels our UCPE uses 27% and 44% less time than CPE {2] fo
Figure 6(a) search and update, respectively. However, the drakvb
Update Time (5000 _table) of our UCPE is that the memory usage is proportitma
100000 the longer address space of IPv6.
10000 10\
‘&’; 1000 i = % 1121.952 5. CONCLUS'ON
00 o Our UCPE optimization schemes reduce the update
w0 [——cre —o—ucrea.y) —a—veren | overhead of multi-bit tries without losing the fasokup
1 ‘ speed. Compared with the previous scheme Controlled
¢ pumberof levels 1° Prefix Expansion (CPE) [2], the proposed solutions
Figure 6(b) provide a faster lookup and update speeds. In IPv4
lookup, we have reduced update cost reach to 3thésaw
sonoono Memory Usage (5000_table) | the worst case memory access is bounded to 8. &esid
100000 | = = Y. our solutions also provide a faster lookup speead (BPE
10000 oren in general case. For multi-bit tries with large rhen of
g 1000 ' level, the improvement of update and search spgexdib
100 ‘ UCPE are more significant. We also tested our UCPE
" | ot s-uoreia) —+-uorea |- scheme with IPv6 routing tables. As the resultsRaf4,
", . . i the performances of update and search are imprbyed
numberof levels our UCPE. However, the memory usage of our UCPE
Figure 6(c) appears to be much larger than CPE. This is explecta

because the address space of IPv6 is much longer th
IPv4. This case makes the proposed UCPE able to be
improved by considering the constraint of the memor
usage constraint. We considered this issue as umefut
works of this paper.

References
memory-optimal multi-bit tries, our UCPE(3,1) and [1] M.A.Ruiz-Sanchez, E.W.Biersack, and W.Dabbous,

UCPE(1,1) require extra 1.4 and 1.9 Mbytes memory “Survgy a},nd Taxonomy of IP Address Lookup
usage than CPE in the worst case, respectively. Algc.)rllthm, IEEE NetworkVol.15, pp.8- 23, 2001.
[2] V. Srinivasan and G. Varghese, “Fast address lookup

C. Resultsfor IPV6 using controlled prefix expansion,” ACM

Table 3 shows the stats of five IPv6 routing tables Transactions on Computer Systerel. 17, no. 1,
we used. The first two tables (AS6447 and AS2.8)the pp. 1-40,Feb. 1999. .
real IPv6 routing tables that are obtained from J& we [31S. Sa_hm anq K.'S. Kim, “Efficient C;,onstructlon Of
can see, the current IPv6 tables are still verylistadbles Multibit Tries For IP ~Lookup,” IEEE/ACM
contain more than 2000 entries are rare. Thus,sgethe Transactions on Networking/ol.11, no.4, pp.650-
methodology proposed in [7] to generate three |4Py® 662, 2003. , ! .)
tables (Generated_1, Generated_2, and Generatels 3). [4] D. Meyer’ University o_f Oregon Route Views Archive
in IPv4, we analyze the update traces obtained fig]m Project, at ht_tp:// archlve.routeV|ews.qrg/.
and generate the synthetic update trace for each ip [51 BGP Routing Table Analysis Reports,
table. Although the address space of IPv6 is 128, bi hitp://bgp.potarco.net/ .
there are almost no tables contain prefixes witigie 6] H- Chao, “Next Generation Routers?roceeding of
128. That is due to the last 64 bits of the IPv@radses the IEEE vol. 90, no. 9, pp. 1518-1558, September
are the MAC addresses which are not able to beraiuta 2002. o)
As the results, we only deal with the first 64 hifsany [7] K. Zheng and B. Liu, "V6Gene: a scalable IPv6 prefi

prefixes. Table 4 shows the experimental resultsrfo generator for route lookup algorithm benchmark,”
level FST, where £r<10. As we can see in Table 4, proceeding of AIN/200, pp. 147'1.52’ April 2006.
our UCPE expand more bits than CPE [2] at eacH teve [€] RrI]ItDtE_// Networkt/ Coordination Centre,
r-level FST. Hence, our UCPE needs less memory P-/IWWW.TPE.Nne

accesses to find the longest matching prefix foergv

Figure 6:Performance of IPv6 FSTs designated by
and proposed UCPE in terms of (a) timeguiremer
for search (in nsce), (b) time requirement for upda
nsce), and (c) memory requirement for update
KBytes)

